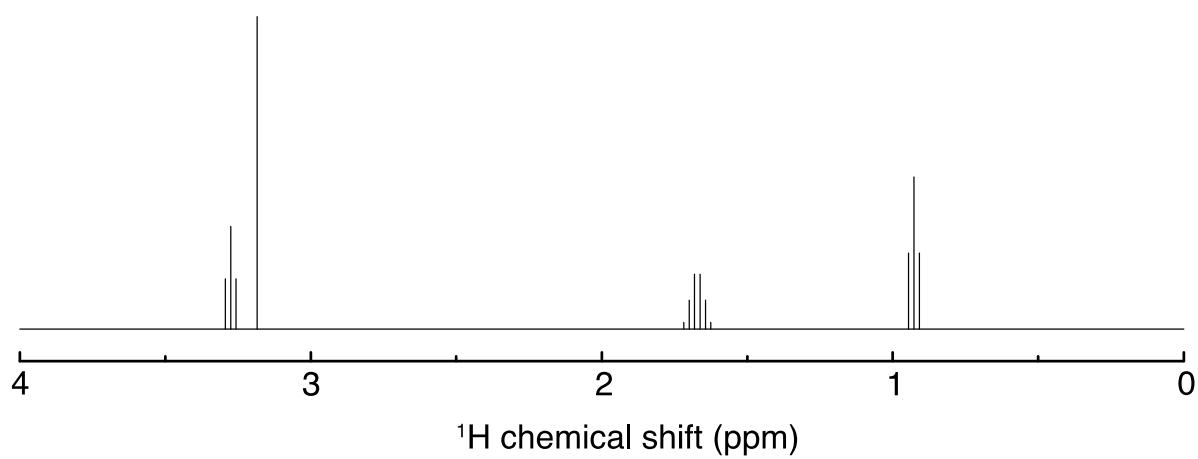


Jigsaw 1C

Introduction to Nuclear Magnetic Resonance


1. * [Keeler Sections 2.1 and 3.2] The international reference compound used in NMR to set up the chemical shift scale is tetramethylsilane, $\text{Si}(\text{CH}_3)_4$, commonly known as TMS. Consider a sample containing pure liquid TMS for analysis. *See also: Jigsaw 1B.1*

Isotope	Nuclear Spin	Natural Abundance	$\gamma / \text{rad}\cdot\text{s}^{-1}\cdot\text{T}^{-1}$
^1H	$\frac{1}{2}$	~100%	2.675×10^8

- Complete the table above by filling in the most common isotope(s) present in the sample (list all isotopes with $\geq 1\%$ natural abundance), the nuclear spin, the natural abundance, and the gyromagnetic ratio of each isotope. Which isotopes are NMR-active? Why?
- [Keeler Section 3.3] Consider a magnetic field strength (B_0) of 11.7467 T. What are the resonance frequencies of the active nuclei (in MHz)?
- Considering the high symmetry of the molecule and neglecting all couplings, each nucleus gives rise to a single peak in the spectrum at the resonance frequency. Draw the spectrum, using an absolute frequency axis (in MHz).

d. * [Keeler Section 2.4] Why is it not possible to detect this theoretical spectrum, i.e. to detect heteronuclei in one single experiment?

2. * [Keeler Section 2.3] The following ^1H spectrum is of a molecule with the chemical formula $\text{C}_4\text{H}_{10}\text{O}$. Predict the structure of the molecule, assign the spectrum, and give the relative intensities of the signals.

